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Why representing forecast errors ? 

For Data Assimilation : 

•Background error covariances B 

 

To make better use of forecasts 

•Error variances : predictability of meteorological events 

•Probability : risk of occurrence of strong events 

 

Difficulties :  

•Physical complexity : Error’s PDFs vary in space and in time 

•Numerical complexity : lack of information to estimate the full 

PDFs 

 Need to model covariances and/or use of 

ensembles 



Context: NWP at convective scale 

Non-hydrostatic models (in the 1-3 km horizontal resolution range) 

allow realistic representation of convection, clouds, precipitation, 

turbulence, surface interactions 

Radar reflectivity simulated by 

AROME 

Specific features: 

• Need coupling models to 

provide LBCs and surface 

conditions 

• Observations linked to 

clouds and precipitation can 

be considered (e.g radars) 

• Analyses must be 

performed frequently 

• Forecasts are very 

expensive in computation 

time!! 
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1.  Use of an EDA based on AROME with 90 members to produce a 

reference database of backgrounds : AEARO-90 

Specific features compared to Global scale 
(Ménétrier, Montmerle, Berre and Michel, QJRMS 2014) 

ek 

so
2)) 

Fisher 2003 ; Kucukkaraca and Fisher (2006); Berre et al 2006 



2. Approximate B using N backgrounds and their mean : 

 
 

 

3. Split      in variances / correlations: 

• Correlations can be approximated locally using the tensor of the 

Local Correlation Hessian (LCH, Weaver and Mirouze (2012)) : 

 
 

• H is computed using the covariances of normalized 

perturbation derivatives (Michel 2012) 

• Local correlation lengths are then deduced in the direction of 

the eigen vectors of H using its eigen values: 

 

Specific features compared to Global scale 



Stronger spatial gradients and larger values due to : 

• the resolution difference and the underlying different physical 

parameterizations 

• the assimilation of different observations (e.g radars) 

Raw background error variances for q at 945 hPa : 

Radar 

AEARP 90 

global scale 

AEARO 90  

conv. scale 

Specific features compared to Global scale 



AEARO 6 

AEARP 6 

AEARP 84 

Spatial correlation of raw background-error variances with 

respect to the AEARO-84  

 

 Downscaling from global models seems not 

adapted for mid-latitude applications 

Humidity Wind 

Specific features compared to Global scale 



Total Lb and ellipses of the LCH tensor 

(=> correlation shapes around the origin) for q at 945 hPa  

• Much shorter length-scales, much more anisotropic structures 

• Small values over mountains and in precipitations 

• LS perturbations advected inside the domain due to coupling  

Specific features compared to Global scale 
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B modelling 

An operational NWP system at convective scale : 

• Uses sequential variational DA with frequent 

assimilation/forecast steps to benefit from observations 

with high temporal resolutions 

• is commonly based on an incremental formulation with CVT 

transform (Courtier et al., 1994) 

 

• uses a sequence of sparse operators to model Bc, that can 

not be expressed at full rank (~(108)2) 

 

 

dx = BC

1/2c

 The challenge is to capture in Bc
1/2 the known important 

features of B 



Typical structure of Bc
1/2 :   

(Derber and Bouttier (1999) 
 

 Kp: Balance operators (or parameter transform) that 

decorrelate multivariate relationships 

 Typically transforms to variables which are assumed to be 

uncorrelated, using analytical operators and regression 

coefficients 

 BS
1/2 : Spatial transforms that decorrelate univariate 

unbalanced variables + variance scaling. Horizontal 

correlations are generally homogeneous and isotropic 

BC

1/2 = KPBS

1/2

B modelling 

 Such formulation allows to get balanced analyzed fields 

 Those operators are calibrated using database of forecasts 

(e.g NMC method, EDA) to get climatological static values 

(More details can be found in Bannister (2008)) 



Known limitations of Bc 

For LAM, strong dependencies to weather regimes (Brousseau 

et al., 2011) and to meteorological phenomena that are under-

represented in the ensemble 

 Often high impact weather! 

B modelling 

“Rain” “No Rain” Example 1 : rain 

Humidity increments 

obtained with a Bc 

modeled using only 

ensembles of precipitating 

profiles and applied in 

rainy areas using a 

heterogeneous 3DVar 
(Montmerle and Berre 2010)  



B modelling 

Normalized deviation from 

linear  geostrophical balance 

for different types of rain 

(Carron and Fillion (2010)) 

Vertical auto-
correlations for T 

(zoom in the first 
500m) 

Ménétrier and 
Montmerle (2011) 

200m 

No fog 

Oper Fog Example 2 : fog 

Also, deviation from hydrostatic balance 
(Vetra-Carvalho et al. 2012) 



Adding some flow dependencies in Bc 

1. In the balance operator  

•For the larger scales (Fisher, 2003): NLBE, Quasi-Geostrophic omega 

and continuity equations 

•A diabatic forcing of balanced vertical motion, as diagnosed by Pagé et 

al. (2007) could (hardly) be introduced 
 

B modelling 

2. In horizontal covariances (using large ensembles) 

• Wavelet formulation allows to model simultaneously scale and 

position-dependent aspects of covariances (Fisher, 2003)  

• Streching of covariances in recursive filters (Purser et al., 2003b) 

• Isotropic correlations computed in a distorted grid (Michel 2012)  

3. In vertical covariances 

• Deformation of vertical correlations based on the static stability of 

the guess (Piccolo and Cullen (2012)) 



Raw correlations B wavelets 

Mesoscale Horizontal correlations based on wavelets  
(Deckmyn and Berre (2005)) 

  

B modelling 

 Shorter length-scales over orography, larger over seas 



Grid deformation for horizontal error correlations (Michel 2012) 

Raw 

Modeled 

diagonal 

spectral 

Distorted grid 

(where 

correlations 

are 

homogeneous 

and isotropic) 

Back to 

regular grid 

B modelling 



1. Use of geographical masks in B modeling (as in Montmerle and Berre (2010))  
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Binary masks: 
Example for 

precipitation 

B modelling for hydrometeors 

2. Compute multivariate covariances for both classical variables 

and hydrometeors for each term of the background perturbations 



cov(qc,divu) 

 Multivariate covariances have been computed for WRF by 

Michel et al. (2011) and for AROME (Martinet et al., 2013) 

B modelling for hydrometeors 

• Vertical correlations strongly linked to the cloud features 

sampled by the ensemble 

• Strong coupling between qu, Tu and divergence 

• Shorter correlation lengths than « classical » variables 

cor(qr ,qr ) 



Flow-dependent vertical 

covariances : 

Use of mean contents to 

distort vertically 

climatological values 

• Used in a 1DVar for IASI cloudy 

radiances (Martinet et al. 2013) 

• Ideally, full 3D covariances could 

be calibrated using daily ensemble 

Error 

variances 

for rain and 

ice cloud 

Mean contents vs. error std dev. “of the 

day” for rain (left) and ice cld (right) 

B modelling for hydrometeors 
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In ensemble based methods, flow dependency of forecast 

errors is provided (entirely or partially) by ensemble 

perturbations ek = xb
k - <xb> : 

 

 

To avoid distant spurious correlations, to reduce the sampling 

noise and to increase the rank, covariance localization is 

applied 
 

 

Where C is a correlation matrix defining horizontal and 

vertical localization via series of transforms 

B deduced from ensemble 

Pe =
1

N -1
ekek

T

k=1

N

å

Be = Pe C (Houtekamer and Mitchell (2001)) 

C is required to improve the properties of Pe and can be much 

simpler than BC , but should be modeled in a compact way for 

computational efficiency 



Very empirical and often sub-

optimal because correlation 

lengths depend on: 

• number of samples 

• resolution and model error 

• observation network 

• scales of the different 

physical processes 

Ensemble covariances localization 

Gaussian shaped-like correlation functions (e.g Gaspari and 

Cohn, 1999) is commonly used in association with a Shur product  

B deduced from ensemble 

Global error variance vs. relative 

scale of correlation for different 

ensemble sizes (Lorenc, 2003) 

 At convective scale, these 

features are even more 

pronounced! 



• Balances are directly 

inherited from the ensemble 

covariance. 

• But, when vertical or 

horizontal spatial gradients 

occur, localization implies 

imbalances 

 
“Sub-geostrophic factor” for different 

optimal correlation scales 

associated with different ensemble 

sizes (Lorenc, 2003) 

B deduced from ensemble 

Localization causes imbalances 

To alleviate this problem, Clayton 

et al. (2012) impose balance after 

localization 

Initialization or IAU could also be used, but with a 

detrimental effect on precipitation forecasts 



Towards hybrid methods 

Bc in deterministic 

VAR 

Be in En-KF like 

methods 

pros • Balanced analyses 

• Smoothness and high 

rank 

• Stability of the VAR 

• Flow dependency, incl. 

balances 

• Easy to compute 

cons • Static variances  

• Homogeneous and 

isotropic correlations 

• Sub-optimal in high 

impact weather 

situations 

• Rank deficient 

• Ensemble spread 

• Sampling noise issues 

• Empirical localization 

that causes imbalance 

• Computational cost of 

the ensemble 



New methods try to merge benefits of the 2 approaches : 

• Some flow dependency can be added in Bc
1/2 by estimating 

its spatial parameters from ensembles (e.g EDA: oper at 

global scale at MF (Raynaud et al. (2009), Varella et al. 

(2011)) and ECMWF (Bonavita (2012)) 

Towards hybrid methods 

• EDA can also be used to compute Bc “of the day” for the 

entire domain (Brousseau et al. 2011) or for specific areas 

(heterogeneous 3DVar, Montmerle and Berre 2010) 

 

 

Where F1 and F2 define the geographical areas where B1 and B2 

are applied (e.g rainy/clear areas) 
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Towards hybrid methods 

(Montmerle MWR 2012) 



The increasingly popular En-VAR methods use the full ensemble 

covariances in an additional term of the variational cost function 
(Hamill and Snyder (2000); Lorenc (2003); Buehner (2005))  

 

 

(where X is the normalized perturbation matrix and L contains the 

localization functions) 

•En-VAR merges the advantages of both approaches in a flexible 

way 

•4D-EnVAR is very interesting at convective scale since it avoids 

the computation of the model’s TL/AD 

Towards hybrid methods 

 In all these methods, filtering of covariance parameters from 

ensembles still is a key point 
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Linear filtering of variances: 
(Benjamin Ménétrier PhD thesis) 
 

 
  

 
 

Localization = “Shur linear filtering” of covariances without 

offset : 

 

Optimal filtering of forecast error 

parameters from ensembles 

^ ~

Idea : find an optimality criteria that only uses the input and the 

output of the filter 

Approach : merging theories of the optimal linear filtering and 

of the centered moments estimation 

Methodology : compute iteratively the filtered signal from 

updated filtering length Lf until the optimality criteria is reached 



Optimal filtering of forecast error 

parameters from ensembles 

If the sampling error is supposed unbiased and uncorrelated with 

the raw signal, a general optimality criteria C = 0 can be found. 

 

For variances : 

 

 

 

 

Where x  is the univariate 4th order moment of the raw signal 

 

If the pdf of the ensemble is Gaussian and if E is approximated 

by a spatial average m :  



Optimal filtering of forecast error 

parameters from ensembles 

RMS errors of variances against a 78 members AROME 

reference for vorticity and specific humidity 

Uncertainty of 

the reference 

 The general criterion is optimal and is mainly 

efficient for small scale variables  



Optimal filtering of forecast error 

parameters from ensembles 

Raw (top) and filtered (bottom) variances for q at 950 hPa 

Lf decreases with number of members (and varies with height) 

6 members 12 members 78 members 



Optimal filtering of forecast error 

parameters from ensembles 

Schur filtering  

With the same hypothesis of optimal linear filtering and 

supposing that variances are optimally filtered, the optimal 

localization length-scale Lij can be computed : 

 

 

 

 

If the sample pdf is Gaussian: 

 

For homogeneous and isotropic localization functions, E is 

approximated through spatial and angular averages. 

 

Sample correlations can also be used :  

 

 



Optimal filtering of forecast error 

parameters from ensembles 

Localization functions 

for zonal wind at 950 hPa 

for AROME : 

 

Diagnosed 

Fitted 

Fitted correlations 

Localization length-

scale increases with 

number of members: 

 Long distance 

correlations are 

more trusted 



Optimal filtering of forecast error 

parameters from ensembles 

Vertical variations 

of fitted 

localization 

functions  

length-scales 

for AROME, 

computed using 

different 

formulations. 
 

(fitted correlation 

function length-scales 

are plotted in dashed 

lines) 

 Important vertical 

variations for wind 

(and T) 



Optimal filtering of forecast error 

parameters from ensembles 

Raw and 

localized 

correlations 

at 16 different 

locations for 30 

and 90 members 

(q at 950 hPa) 



Outlines 

 Specific features compared to global scale 

 B modelling 

 - Climatological formulation 

 - Adding some flow dependencies 

 - Considering hydrometeors 

 B totally or partly deduced from ensembles 

 - principles 

 - role of localization 

 Towards optimal filtering of forecast error 

parameters from ensembles 

 

 Conclusions 



Conclusions 

 Forecast errors at convective scale display features 

linked to the explicit convection, to diabatic processes, 

to the type of surface, to the coupling files, to the 

specific observation network (e.g radars)  

 Significant differences have been shown with global 

scale 

 Operational formulations of Bc are clearly sub-optimal, 

especially for LAM in regions characterized by high 

impact weather (e.g clouds and precipitations) 

 Flow dependencies can be provided from ensembles, 

whether in Bc or using an En-VAR formulation 



Operationally, the set up of an ensemble still is difficult because :  

• need of perturbed LBCs 

• the computational cost 

• the estimation and the representation of model error 

• sampling noise is severe, especially at CS 

 Cheaper ensembles in the limit of the “grey zone”  (providing 

that explicit convection is activated) could be an option 

 An optimal filtering of forecast error parameters is essential 

 Such filtering depends strongly on the ensemble size, on the 

altitude and on the variable 

 Results can eventually be validated and tuned using 

innovation-based diagnostics 

Conclusions 



Possible evolution of B in 

operational NWP systems at CS 

Ensemble size 

Degree of flow 

dependency 

10 1 100 

Static BC with  

balance relationships, 

homogeneous and 

isotropic covariances for 

unbalanced variables 

EnVar: use of  a spatially 

localized covariance 

matrix Be deduced from 

an ensemble, combined 

with BC 

EnVar with more optimal 

localizations in Be 

Conclusions 

Static BC with 

covariances modulated 

by filtered values from an 

ensemble 

One or several BC 

updated daily from 

an ensemble 



Thank you for your attention ! 
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