

http://www.euro4m.eu/

EURO4M Regional Reanalysis: Evaluation of Precipitation

Peter Jermey

Richard Renshaw, Dale Barker, Adam Maycock, Stephen Oxley

Thanks to Ric Crocker and Rachel North

© Crown copyright Met Office

Met Office European Reanalysis and Observations for Monitoring

- EU funded project for information about the state & evolution of the European climate
- Has produced/expanded observation datasets, reanalyses and downscalers
- Includes a wide range of atmospheric variables
- EURO4M runs from April 2010 to March 2014

EURO4M – 2 reanalyses (HIRLAM, MO) & 2 downscalers (MESAN, MESCAN)

Talk Outline

Met Office

- EURO4M reanalyses & downscalers
- Climate Statistics
- Case Study Eastern Europe Floods July 2008
- Precipitation Evaluation:
 - Annual RMSEs
 - Location based verification
 - Scale-selective verification

EURO4M Reanalyses & Downscalers

Met Office

- MO is a 12km European regional reanalysis
- 4DVAR assimilation scheme at 24km
- No direct assimilation of precipitation observations
- Boundary conditions from ERA-Interim
- Covers 2008-2009
- Data at hourly intervals for a wide variety of variables including
 - temperature pressure humidity radiation

wind precipitation cloud visibility

 Data available in ECMWF MARS archive www.ecmwf.int

Name	Res.	Period	D.A.	Precip. Obs.
МО	0.11°/12km	2008-2009	4DVAR	×
© Crown copyright Met Office				

HIRLAM, MESAN & MESCAN

Met Office

- SMHI's HIRLAM-based 24km European regional reanalysis
- Covers 1989-2010
- Boundary conditions from ERA-Interim
- 3DVAR assimilation scheme
- No direct assimilation of precipitation observations

Name	Res.	Period	D.A.	Precip. Obs.
	-	-		
	•			
МО	0.11°/12km	2008-2009	4DVAR	×

© Crown copyright Met Office

HIRLAM, MESAN & MESCAN

Met Office

- MESAN and MES
- Combines HIRLAN
- Optimal Interpolati

tation downscalers se observation data

Name	Res.	Period	D.A.	Precip. Obs.
HIRLAM	0.2°/20km	1989-2010	3DVAR	×
МО	0.11°/12km	2008-2009	4DVAR	×
© Crown copyright	Met Office		•	•

Climate Statistics

Monthly Means

Compare with ECA&D statistics from obs stations

МО

Compare with ECA&D statistics from obs stations

Mean Temperature	Max of Min Temp	Dry Days	
Mean of Min Temp	Mean Precip	Wet Days	
Mean of Max Temp	Icing Days	Frost Days	MO better in
Mean Wind Speed	Total Wet Precip		24/24 months
Max of Min Temp	Mean Temp Range		23/24 months
Max of Max Temp	Tropical Nights		22/24 or 21/24 mns
Min of Min Temp	Mean Wet Precip		20/24 or 19/24 mns
Max Precip 5 Days	Mean Cloud		10/24 months
Summer Days	Mean Rel Hum		
Calm Days	Maximum Gust		
Days Precip>10mm	Max Daily Precip		
Days Precip>20mm	Wind Days	Mean PMSL	

© Crown copyright Met Office

- Climate statistics are useful for monitoring the European climate
- Regional models represent 12/28 stats better than ERA-Interim for the full period.
- Regional models represent 27/28 stats better than ERA-Interim for most of the period.
- Large scale variables (e.g. pressure) are better represented in the global ERA-Interim

Met Office

- Critical aspect of climate
- Covers wide range of intensities, periods and scales
- Flooding in central Europe in 2013 was responsible for 25 deaths and 12bn Euros damage
- Challenge for NWP: Extremes are softened by grid-box averaging/long accumulation periods
- Higher resolution should lead to improved representation of extremes

Floods July 2008

© Crown copyright Met Office

ROMANIA

- 9000 houses damaged
- 20,000ha ag. land flooded
- 5 dead
- \$100 million

MOLDOVA

- 300 houses destroyed
- 7500ha ag. land flooded
- 3 dead
- \$300million

UKRAINE

- 50,000 houses flooded
- 300,000 people affected
- 38 dead
- cost \$700million

Floods July 2008

SYNOP

© Cro MO

et Office

ERA-Interim

MESAN

HIRLAM

16 mm

64

4

MESCAN

Met Office

- Truth is gridded 24hr rain gauge observations (ECMWF)
- Error(Model) = Obs Model
- Annual RMSEs 2008

mт

© Crown copyright Met Office

ERA-Interim

• Location-based verification alone can be dangerous for precip

• Scores higher in winter

ERA-Interim

HIRLAM MO MESAN MESCAN

- Truth is gridded 24hr rain gauge observations (ECMWF)
- Rel Diff(Model,ERA-Interim) = (Model ERA-Interim)/ERA-Interim

Met Office

- At low thresholds models over-represent •
- At high thresholds models under-represent, but ... •
- ... bias is reduced by increased resolution & 4DVAR assimilation •

- ALL models over-represent at low thresholds and under-represent at high thresholds
- ALL models score best in winter (large-scales dominate)
- HIRLAM \approx ERA-Interim at low thresholds; HIRLAM > ERA-Interim at high thresholds
- MO > ERA-Interim especially at high thresholds
- MESAN/MESCAN >> reanalyses

WHY?!

- 3DVAR vs 4DVAR
- Resolution
- Assimilation of Precip Obs

Assimilation of Precip Obs

Ctrl - ERA-Interim (80km)

- MESAN (5km)
- MO (12km) + [MO (12km) ERA-Interim (80km)]
- Test2 MO with assimilation (12km)

LOW THRESHOLDS

(non-precip) Obs Assim (precip) Obs Assim HIGH THRESHOLDS 4D D.A. Resolution (non-precip) Obs Assim (precip) Obs Assim

- EURO4M has produced new high resolution datasets
- Reanalyses: HIRLAM (24km; 1989-2010), MO (12km; 2008-2009)
- Downscalers: MESAN & MESCAN (5km)
- Regional reanalysis improves representation of surface events
- Increasing resolution improves representation of extreme precipitation events
- Assimilation of precipitation observations improves representation of all precipitation events

Met Office

Uncertainties in Ensembles of Regional Re-Analyses

- UERRA is the follow-on project to EURO4M
- EURO4M partners plus ECMWF, the University of Bonn and MET Norway
- To continue development of observation data & produce ensembles of regional reanalyses
- UERRA runs from January 2014 to December 2017

Thank you for listening... http://www.euro4m.eu/

MESAN & MESCAN Differences

Met Office

$$\begin{split} f^{\mathbf{S}}(r,R,L) &= \frac{1}{2} \left(e^{-r/L} + (1 + \frac{2r}{L}) e^{-2r/R} \right) \\ L^{\mathbf{S}} &= 270 \mathrm{km} \\ \sigma_o^{\mathbf{S}} &= 0.7 + 0.2 \mathrm{RR} \\ \sigma_b^{\mathbf{S}} &= 20 \mathrm{mm} \end{split}$$

$$\begin{split} f^{\text{SC}}(r,R,L) &= (1+\frac{r}{L})e^{-r/L} \\ L^{\text{SC}} &= 35 \text{km} \\ \sigma_o^{\text{SC}} &= 5 \text{mm} \\ \sigma_b^{\text{SC}} &= 13 \text{mm} \end{split}$$

- σ standard deviation of error
- f background error correlation function
- S MESAN
- SC MESCAN
- r covariance distance
- R reference distance
- L horizontal length scale

